家电维修班,手机维修班,电脑维修班,电工班,焊工班,液晶电视维修班,电动工具维修班、电动车摩托车维修班、网络营销培训、网站设计培训、淘宝培训---全国招生 家电维修班,手机维修班,电脑维修班,电工班,焊工班,液晶电视维修班,电动工具维修班、电动车摩托车维修班、网络营销培训、网站设计培训、淘宝培训---全国招生
当前位置: 电脑硬件维修培训网网络技术RFC 1180 (TCP/IP Tutorial)
文章内容

RFC 1180 (TCP/IP Tutorial)

作者:佚名  来源:本站整理  发布时间:2012-01-18 23:26:06
Network Working Group                                      T. Socolofsky
Request for Comments:  1180                                      C. Kale
                                                  Spider Systems Limited
                                                            January 1991

                           A TCP/IP Tutorial

Status of this Memo

   This RFC is a tutorial on the TCP/IP protocol suite, focusing   particularly on the steps in forwarding an IP datagram from source
   host to destination host through a router.  It does not specify an   Internet standard.  Distribution of this memo is unlimited.

Table of Contents

    1.  Introduction................................................   1
    2.  TCP/IP Overview.............................................   2
    3.  Ethernet....................................................   8
    4.  ARP.........................................................   9
    5.  Internet Protocol...........................................  12
    6.  User Datagram Protocol......................................  22
    7.  Transmission Control Protocol...............................  24
    8.  Network Applications........................................  25
    9.  Other Information...........................................  27
   10.  References..................................................  27
   11.  Relation to other RFCs......................................  27
   12.  Security Considerations.....................................  27
   13.  Authors' Addresses..........................................  28

1.  Introduction

   This tutorial contains only one view of the salient points of TCP/IP,   and therefore it is the "bare bones" of TCP/IP technology.  It omits   the history of development and funding, the business case for its   use, and its future as compared to ISO OSI.  Indeed, a great deal of   technical information is also omitted.  What remains is a minimum of   information that must be understood by the professional working in a   TCP/IP environment.  These professionals include the systems   administrator, the systems programmer, and the network manager.

   This tutorial uses examples from the UNIX TCP/IP environment, however   the main points apply across all implementations of TCP/IP.

   Note that the purpose of this memo is explanation, not definition.   If any question arises about the correct specification of a protocol,   please refer to the actual standards defining RFC.

   The next section is an overview of TCP/IP, followed by detailed   descriptions of individual components.

2.  TCP/IP Overview

   The generic term "TCP/IP" usually means anything and everything   related to the specific protocols of TCP and IP.  It can include   other protocols, applications, and even the network medium.  A sample   of these protocols are: UDP, ARP, and ICMP.  A sample of these   applications are: TELNET, FTP, and rcp.  A more accurate term is   "internet technology".  A network that uses internet technology is   called an "internet".

2.1  Basic Structure

   To understand this technology you must first understand the following   logical structure:

                     ----------------------------
                     |    network applications  |
                     |                          |
                     |...  \ | /  ..  \ | /  ...|
                     |     -----      -----     |
                     |     |TCP|      |UDP|     |
                     |     -----      -----     |
                     |         \      /         |
                     |         --------         |
                     |         |  IP  |         |
                     |  -----  -*------         |
                     |  |ARP|   |               |
                     |  -----   |               |
                     |      \   |               |
                     |      ------              |
                     |      |ENET|              |
                     |      ---@--              |
                     ----------|-----------------
                               |
         ----------------------o---------
             Ethernet Cable

                  Figure 1.  Basic TCP/IP Network Node

   This is the logical structure of the layered protocols inside a   computer on an internet.  Each computer that can communicate using   internet technology has such a logical structure.  It is this logical   structure that determines the behavior of the computer on the   internet.  The boxes represent processing of the data as it passes   through the computer, and the lines connecting boxes show the path of   data.  The horizontal line at the bottom represents the Ethernet   cable; the "o" is the transceiver.  The "*" is the IP address and the   "@" is the Ethernet address.  Understanding this logical structure is   essential to understanding internet technology; it is referred to   throughout this tutorial.

2.2  Terminology

   The name of a unit of data that flows through an internet is   dependent upon where it exists in the protocol stack.  In summary: if   it is on an Ethernet it is called an Ethernet frame; if it is between   the Ethernet driver and the IP module it is called a IP packet; if it   is between the IP module and the UDP module it is called a UDP   datagram; if it is between the IP module and the TCP module it is   called a TCP segment (more generally, a transport message); and if it   is in a network application it is called a application message.

   These definitions are imperfect.  Actual definitions vary from one   publication to the next.  More specific definitions can be found in   RFC 1122, section 1.3.3.

   A driver is software that communicates directly with the network   interface hardware.  A module is software that communicates with a   driver, with network applications, or with another module.

   The terms driver, module, Ethernet frame, IP packet, UDP datagram,   TCP message, and application message are used where appropriate   throughout this tutorial.

2.3  Flow of Data

   Let's follow the data as it flows down through the protocol stack   shown in Figure 1.  For an application that uses TCP (Transmission   Control Protocol), data passes between the application and the TCP   module.  For applications that use UDP (User Datagram Protocol), data   passes between the application and the UDP module.  FTP (File   Transfer Protocol) is a typical application that uses TCP.  Its   protocol stack in this example is FTP/TCP/IP/ENET.  SNMP (Simple   Network Management Protocol) is an application that uses UDP.  Its   protocol stack in this example is SNMP/UDP/IP/ENET.

   The TCP module, UDP module, and the Ethernet driver are n-to-1   multiplexers.  As multiplexers they switch many inputs to one output.
   They are also 1-to-n de-multiplexers.  As de-multiplexers they switch   one input to many outputs according to the type field in the protocol
   header.

         1   2 3 ...   n                   1   2 3 ...   n
          \  |      /      |               \  | |      /       ^
           \ | |   /       |                \ | |     /        |
         -------------   flow              ----------------   flow
         |multiplexer|    of               |de-multiplexer|    of
         -------------   data              ----------------   data
              |            |                     |              |
              |            v                     |              |
              1                                  1

        Figure 2.  n-to-1 multiplexer and 1-to-n de-multiplexer

   If an Ethernet frame comes up into the Ethernet driver off the   network, the packet can be passed upwards to either the ARP (Address   Resolution Protocol) module or to the IP (Internet Protocol) module.
   The value of the type field in the Ethernet frame determines whether   the Ethernet frame is passed to the ARP or the IP module.

   If an IP packet comes up into IP, the unit of data is passed upwards   to either TCP or UDP, as determined by the value of the protocol   field in the IP header.

   If the UDP datagram comes up into UDP, the application message is   passed upwards to the network application based on the value of the   port field in the UDP header.  If the TCP message comes up into TCP,   the application message is passed upwards to the network application   based on the value of the port field in the TCP header.

   The downwards multiplexing is simple to perform because from each   starting point there is only the one downward path; each protocol   module adds its header information so the packet can be de-multiplexed at the destination computer.

   Data passing out from the applications through either TCP or UDP   converges on the IP module and is sent downwards through the lower   network interface driver.

   Although internet technology supports many different network media,   Ethernet is used for all examples in this tutorial because it is the   most common physical network used under IP.  The computer in Figure 1   has a single Ethernet connection.  The 6-byte Ethernet address is   unique for each interface on an Ethernet and is located at the lower   interface of the Ethernet driver.

   The computer also has a 4-byte IP address.  This address is located   at the lower interface to the IP module.  The IP address must be   unique for an internet.

   A running computer always knows its own IP address and Ethernet   address.

2.4  Two Network Interfaces

   If a computer is connected to 2 separate Ethernets it is as in Figure   3.

                ----------------------------
                |    network applications  |
                |                          |
                |...  \ | /  ..  \ | /  ...|
                |     -----      -----     |
                |     |TCP|      |UDP|     |
                |     -----      -----     |
                |         \      /         |
                |         --------         |
                |         |  IP  |         |
                |  -----  -*----*-  -----  |
                |  |ARP|   |    |   |ARP|  |
                |  -----   |    |   -----  |
                |      \   |    |   /      |
                |      ------  ------      |
                |      |ENET|  |ENET|      |
                |      ---@--  ---@--      |
                ----------|-------|---------
                          |       |
                          |    ---o---------------------------
                          |             Ethernet Cable 2
           ---------------o----------
             Ethernet Cable 1

             Figure 3.  TCP/IP Network Node on 2 Ethernets

   Please note that this computer has 2 Ethernet addresses and 2 IP   addresses.

   It is seen from this structure that for computers with more than one   physical network interface, the IP module is both a n-to-m   multiplexer and an m-to-n de-multiplexer.

         1   2 3 ...   n                   1   2 3 ...   n
          \  | |      /    |                \  | |      /       ^
           \ | |     /     |                 \ | |     /        |
         -------------   flow              ----------------   flow
         |multiplexer|    of               |de-multiplexer|    of
         -------------   data              ----------------   data
           / | |     \     |                 / | |     \        |
          /  | |      \    v                /  | |      \       |
         1   2 3 ...   m                   1   2 3 ...   m

        Figure 4.  n-to-m multiplexer and m-to-n de-multiplexer

   It performs this multiplexing in either direction to accommodate   incoming and outgoing data.  An IP module with more than 1 network   interface is more complex than our original example in that it can   forward data onto the next network.  Data can arrive on any network   interface and be sent out on any other.

                           TCP      UDP
                             \      /
                              \    /
                          --------------
                          |     IP     |
                          |            |
                          |    ---     |
                          |   /   \    |
                          |  /     v   |
                          --------------
                           /         \
                          /           \
                       data           data
                      comes in         goes out
                     here               here

            Figure 5.  Example of IP Forwarding a IP Packet

   The process of sending an IP packet out onto another network is   called "forwarding" an IP packet.  A computer that has been dedicated   to the task of forwarding IP packets is called an "IP-router".

   As you can see from the figure, the forwarded IP packet never touches   the TCP and UDP modules on the IP-router.  Some IP-router
   implementations do not have a TCP or UDP module.

2.5  IP Creates a Single Logical Network

   The IP module is central to the success of internet technology.  Each   module or driver adds its header to the message as the message passes

   down through the protocol stack.  Each module or driver strips the   corresponding header from the message as the message climbs the   protocol stack up towards the application.  The IP header contains   the IP address, which builds a single logical network from multiple   physical networks.  This interconnection of physical networks is the   source of the name: internet.  A set of interconnected physical   networks that limit the range of an IP packet is called an   "internet".

2.6  Physical Network Independence

   IP hides the underlying network hardware from the network   applications.  If you invent a new physical network, you can put it   into service by implementing a new driver that connects to the   internet underneath IP.  Thus, the network applications remain intact   and are not vulnerable to changes in hardware technology.

2.7  Interoperability

   If two computers on an internet can communicate, they are said to   "interoperate"; if an implementation of internet technology is good,   it is said to have "interoperability".  Users of general-purpose   computers benefit from the installation of an internet because of the   interoperability in computers on the market.  Generally, when you buy   a computer, it will interoperate.  If the computer does not have   interoperability, and interoperability can not be added, it occupies   a rare and special niche in the market.

2.8  After the Overview

   With the background set, we will answer the following questions:

   When sending out an IP packet, how is the destination Ethernet   address determined?

   How does IP know which of multiple lower network interfaces to use   when sending out an IP packet?

   How does a client on one computer reach the server on another?

   Why do both TCP and UDP exist, instead of just one or the other?

   What network applications are available?

   These will be explained, in turn, after an Ethernet refresher.

3.  Ethernet

   This section is a short review of Ethernet technology.

   An Ethernet frame contains the destination address, source address,   type field, and data.

   An Ethernet address is 6 bytes.  Every device has its own Ethernet   address and listens for Ethernet frames with that destination   address.  All devices also listen for Ethernet frames with a wild- card destination address of "FF-FF-FF-FF-FF-FF" (in hexadecimal),   called a "broadcast" address.

   Ethernet uses CSMA/CD (Carrier Sense and Multiple Access with   Collision Detection).  CSMA/CD means that all devices communicate on   a single medium, that only one can transmit at a time, and that they   can all receive simultaneously.  If 2 devices try to transmit at the   same instant, the transmit collision is detected, and both devices   wait a random (but short) period before trying to transmit again.

3.1  A Human Analogy

   A good analogy of Ethernet technology is a group of people talking in   a small, completely dark room.  In this analogy, the physical network
   medium is sound waves on air in the room instead of electrical   signals on a coaxial cable.

   Each person can hear the words when another is talking (Carrier   Sense).  Everyone in the room has equal capability to talk (Multiple   Access), but none of them give lengthy speeches because they are  polite.  If a person is impolite, he is asked to leave the room   (i.e., thrown off the net).

   No one talks while another is speaking.  But if two people start   speaking at the same instant, each of them know this because each   hears something they haven't said (Collision Detection).  When these   two people notice this condition, they wait for a moment, then one   begins talking.  The other hears the talking and waits for the first   to finish before beginning his own speech.

   Each person has an unique name (unique Ethernet address) to avoid   confusion.  Every time one of them talks, he prefaces the message   with the name of the person he is talking to and with his own name   (Ethernet destination and source address, respectively), i.e., "Hello   Jane, this is Jack, ..blah blah blah...".  If the sender wants to   talk to everyone he might say "everyone" (broadcast address), i.e.,   "Hello Everyone, this is Jack, ..blah blah blah...".

4.  ARP

   When sending out an IP packet, how is the destination Ethernet   address determined?

   ARP (Address Resolution Protocol) is used to translate IP addresses  to Ethernet addresses.  The translation is done only for outgoing IP
   packets, because this is when the IP header and the Ethernet header  are created.

4.1  ARP Table for Address Translation

   The translation is performed with a table look-up.  The table, called  the ARP table, is stored in memory and contains a row for each   computer.  There is a column for IP address and a column for Ethernet  address.  When translating an IP address to an Ethernet address, the  table is searched for a matching IP address.  The following is a   simplified ARP table:

                  ------------------------------------
                  |IP address       Ethernet address |
                  ------------------------------------
                  |223.1.2.1        08-00-39-00-2F-C3|
                  |223.1.2.3        08-00-5A-21-A7-22|
                  |223.1.2.4        08-00-10-99-AC-54|
                  ------------------------------------
                      TABLE 1.  Example ARP Table

   The human convention when writing out the 4-byte IP address is each  byte in decimal and separating bytes with a period.  When writing out
   the 6-byte Ethernet address, the conventions are each byte in  hexadecimal and separating bytes with either a minus sign or a colon.

   The ARP table is necessary because the IP address and Ethernet  address are selected independently; you can not use an algorithm to   translate IP address to Ethernet address.  The IP address is selected   by the network manager based on the location of the computer on the   internet.  When the computer is moved to a different part of an   internet, its IP address must be changed.  The Ethernet address is   selected by the manufacturer based on the Ethernet address space   licensed by the manufacturer.  When the Ethernet hardware interface   board changes, the Ethernet address changes.

4.2  Typical Translation Scenario

   During normal operation a network application, such as TELNET, sends   an application message to TCP, then TCP sends the corresponding TCP
   message to the IP module.  The destination IP address is known by the  application, the TCP module, and the IP module.  At this point the IP
   packet has been constructed and is ready to be given to the Ethernet  driver, but first the destination Ethernet address must be   determined.

   The ARP table is used to look-up the destination Ethernet address.

   4.3  ARP Request/Response Pair

   But how does the ARP table get filled in the first place?  The answer  is that it is filled automatically by ARP on an "as-needed" basis.

   Two things happen when the ARP table can not be used to translate an   address:

     1. An ARP request packet with a broadcast Ethernet address is sent  out on the network to every computer.

     2. The outgoing IP packet is queued.

   Every computer's Ethernet interface receives the broadcast Ethernet  frame.  Each Ethernet driver examines the Type field in the Ethernet   frame and passes the ARP packet to the ARP module.  The ARP request  packet says "If your IP address matches this target IP address, then  please tell me your Ethernet address".  An ARP request packet looks   something like this:

                ---------------------------------------
                |Sender IP Address   223.1.2.1        |
                |Sender Enet Address 08-00-39-00-2F-C3|
                ---------------------------------------
                |Target IP Address   223.1.2.2        |
                |Target Enet Address <blank>          |
                ---------------------------------------
                     TABLE 2.  Example ARP Request

   Each ARP module examines the IP address and if the Target IP address  matches its own IP address, it sends a response directly to the
   source Ethernet address.  The ARP response packet says "Yes, that   target IP address is mine, let me give you my Ethernet address".  An
   ARP response packet has the sender/target field contents swapped as  compared to the request.  It looks something like this:

                ---------------------------------------
                |Sender IP Address   223.1.2.2        |
                |Sender Enet Address 08-00-28-00-38-A9|
                ---------------------------------------
                |Target IP Address   223.1.2.1        |
                |Target Enet Address 08-00-39-00-2F-C3|
                ---------------------------------------
                     TABLE 3.  Example ARP Response

   The response is received by the original sender computer.  The   Ethernet driver looks at the Type field in the Ethernet frame then   passes the ARP packet to the ARP module.  The ARP module examines the   ARP packet and adds the sender's IP and Ethernet addresses to its ARP   table.

   The updated table now looks like this:

                   ----------------------------------
                   |IP address     Ethernet address |
                   ----------------------------------
                   |223.1.2.1      08-00-39-00-2F-C3|
                   |223.1.2.2      08-00-28-00-38-A9|
                   |223.1.2.3      08-00-5A-21-A7-22|
                   |223.1.2.4      08-00-10-99-AC-54|
                   ----------------------------------
                   TABLE 4.  ARP Table after Response

4.4  Scenario Continued

   The new translation has now been installed automatically in the   table, just milli-seconds after it was needed.  As you remember from   step 2 above, the outgoing IP packet was queued.  Next, the IP   address to Ethernet address translation is performed by look-up in   the ARP table then the Ethernet frame is transmitted on the Ethernet.   Therefore, with the new steps 3, 4, and 5, the scenario for the   sender computer is:

     1. An ARP request packet with a broadcast Ethernet address is sent  out on the network to every computer.

     2. The outgoing IP packet is queued.

     3. The ARP response arrives with the IP-to-Ethernet address  translation for the ARP table.

     4. For the queued IP packet, the ARP table is used to translate the  IP address to the Ethernet address.

     5. The Ethernet frame is transmitted on the Ethernet.

   In summary, when the translation is missing from the ARP table, one   IP packet is queued.  The translation data is quickly filled in with   ARP request/response and the queued IP packet is transmitted.

   Each computer has a separate ARP table for each of its Ethernet interfaces.  If the target computer does not exist, there will be no   ARP response and no entry in the ARP table.  IP will discard outgoing  IP packets sent to that address.  The upper layer protocols can't  tell the difference between a broken Ethernet and the absence of a  computer with the target IP address.

   Some implementations of IP and ARP don't queue the IP packet while waiting for the ARP response.  Instead the IP packet is discarded and  the recovery from the IP packet loss is left to the TCP module or the   UDP network application.  This recovery is performed by time-out and   retransmission.  The retransmitted message is successfully sent out  onto the network because the first copy of the message has already   caused the ARP table to be filled.

本新闻共4页,当前在第1页  1  2  3  4  

在线报名
友情链接